skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McKee, Shawn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Szumlak, T; Rachwał, B; Dziurda, A; Schulz, M; vom_Bruch, D; Ellis, K; Hageboeck, S (Ed.)
    This study explores enhancements in analysis speed, WAN bandwidth efficiency, and data storage management through an innovative data access strategy. The proposed model introduces specialized ‘delivery’ services for data preprocessing, which include filtering and reformatting tasks executed on dedicated hardware located alongside the data repositories at CERN’s Tier-0, Tier-1, or Tier-2 facilities. Positioned near the source storage, these services are crucial for limiting redundant data transfers and focus on sending only vital data to distant analysis sites, aiming to optimize network and storage use at those sites. Within the scope of the NSF-funded FABRIC Across Borders (FAB) initiative, we assess this model using an “in-network, edge” computing cluster at CERN, outfitted with substantial processing capabilities (CPU, GPU, and advanced network interfaces). This edge computing cluster features dedicated network peering arrangements that link CERN Tier-0, the FABRIC experimental network, and an analysis center at the University of Chicago, creating a solid foundation for our research. Central to our infrastructure is ServiceX, an R&D software project under the Data Organization, Management, and Access (DOMA) group of the Institute for Research and Innovation in Software for High Energy Physics - IRIS-HEP. ServiceX is a scalable filtering and reformatting service, designed to operate within a Kubernetes environment and deliver output to an S3 object store at an analysis facility. Our study assesses the impact of server-side delivery services in augmenting the existing HEP computing model, particularly evaluating their possible integration within the broader WAN infrastructure. This model could empower Tier-1 and Tier-2 centers to become efficient data distribution nodes, enabling a more cost-effective way to disseminate data to analysis sites and object stores, thereby improving data access and efficiency. This research is experimental and serves as a demonstrator of the capabilities and improvements that such integrated computing models could offer in the HL-LHC era. 
    more » « less
    Free, publicly-accessible full text available October 7, 2026
  2. Biscarat, C.; Campana, S.; Hegner, B.; Roiser, S.; Rovelli, C.I.; Stewart, G.A. (Ed.)
    Infrastructures supporting distributed scientific collaborations must address competing goals in both providing high performance access to resources while simultaneously securing the infrastructure against security threats. The NetBASILISK project is attempting to improve the security of such infrastructures while not adversely impacting their performance. This paper will present our work to create a benchmark and monitoring infrastructure that allows us to test for any degradation in transferring data into a NetBASILISK protected site. 
    more » « less
  3. null (Ed.)
    The experiments at the Large Hadron Collider (LHC) rely upon a complex distributed computing infrastructure (WLCG) consisting of hundreds of individual sites worldwide at universities and national laboratories, providing about half a billion computing job slots and an exabyte of storage interconnected through high speed networks. Wide Area Networking (WAN) is one of the three pillars (together with computational resources and storage) of LHC computing. More than 5 PB/day are transferred between WLCG sites. Monitoring is one of the crucial components of WAN and experiments operations. In the past years all experiments have invested significant effort to improve monitoring and integrate networking information with data management and workload management systems. All WLCG sites are equipped with perfSONAR servers to collect a wide range of network metrics. We will present the latest development to provide the 3D force directed graph visualization for data collected by perfSONAR. The visualization package allows site admins, network engineers, scientists and network researchers to better understand the topology of our Research and Education networks and it provides the ability to identify nonreliable or/and nonoptimal network paths, such as those with routing loops or rapidly changing routes. 
    more » « less
  4. Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W. (Ed.)
    High Energy Physics (HEP) experiments rely on the networks as one of the critical parts of their infrastructure both within the participating laboratories and sites as well as globally to interconnect the sites, data centres and experiments instrumentation. Network virtualisation and programmable networks are two key enablers that facilitate agile, fast and more economical network infrastructures as well as service development, deployment and provisioning. Adoption of these technologies by HEP sites and experiments will allow them to design more scalable and robust networks while decreasing the overall cost and improving the effectiveness of the resource utilization. The primary challenge we currently face is ensuring that WLCG and its constituent collaborations will have the networking capabilities required to most effectively exploit LHC data for the lifetime of the LHC. In this paper we provide a high level summary of the HEPiX NFV Working Group report that explored some of the novel network capabilities that could potentially be deployment in time for HL-LHC. 
    more » « less
  5. Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W. (Ed.)
    WLCG relies on the network as a critical part of its infrastructure and therefore needs to guarantee effective network usage and prompt detection and resolution of any network issues including connection failures, congestion and traffic routing. The OSG Networking Area, in partnership with WLCG, is focused on being the primary source of networking information for its partners and constituents. It was established to ensure sites and experiments can better understand and fix networking issues, while providing an analytics platform that aggregates network monitoring data with higher level workload and data transfer services. This has been facilitated by the global network of the perfSONAR instances that have been commissioned and are operated in collaboration with WLCG Network Throughput Working Group. An additional important update is the inclusion of the newly funded NSF project SAND (Service Analytics and Network Diagnosis) which is focusing on network analytics. This paper describes the current state of the network measurement and analytics platform and summarises the activities taken by the working group and our collaborators. This includes the progress being made in providing higher level analytics, alerting and alarming from the rich set of network metrics we are gathering. 
    more » « less
  6. Abstract Neuroscience is advancing standardization and tool development to support rigor and transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable and reusable) access. brainlife.io was developed to democratize neuroimaging research. The platform provides data standardization, management, visualization and processing and automatically tracks the provenance history of thousands of data objects. Here, brainlife.io is described and evaluated for validity, reliability, reproducibility, replicability and scientific utility using four data modalities and 3,200 participants. 
    more » « less
  7. We describe progress on building the SLATE (Services Layer at the Edge) platform. The high level goal of SLATE is to facilitate creation of multi-institutional science computing systems by augmenting the canonical Science DMZ pattern with a generic, "programmable", secure and trusted underlayment platform. This platform permits hosting of advanced container-centric services needed for higher-level capabilities such as data transfer nodes, software and data caches, workflow services and science gateway components. SLATE uses best-of-breed data center virtualization and containerization components, and where available, software defined networking, to enable distributed automation of deployment and service lifecycle management tasks by domain experts. As such it will simplify creation of scalable platforms that connect research teams, institutions and resources to accelerate science while reducing operational costs and development cycle times. 
    more » « less